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• Starting from basic structure of
Narayanan, Neuberger 1993, 1994, 1995
and Lüscher 1999, 2000
recently generalization W.K. 2003

• In view of Ginsparg-Wilson (GW) Dirac
operator D = ρ(1− V ) with V −1 = V †

in W.K. 2003 more generally D = F (V )
and chiral projections P−(V ) and P̄+(V )

• Here formulation without reference to V
to reveal truly relevant features,
restrictions on spectra of D removed,
much more general structure of P− and P̄+

• Also condition on basis transformations
refined and related properties of
equivalence classes of bases worked out

• Topics:
Dirac operators, spectral representations

structure of chiral projections

forms of correlation functions

equivalence classes of bases

transformation properties

variations, perturbation theory



• For [D†, D] = 0 and D† = γ5Dγ5 we have
the spectral representation

D =
∑
j

λ̂j(P
+
j + P−j ) +

∑
k

(λkP
I
k + λ∗kP

II
k )

with Im λ̂j = 0 and Im λk > 0 and where

γ5P
±
j = P±j γ5 = ±P±j and γ5P I

k = P II
k γ5

• Since Tr(γ51) = Tr(γ5P I
k) = Tr(γ5P II

k ) = 0
we get for N±j = TrP±j∑

j

(N+
j −N

−
j ) = 0

With λ̂0 = 0 the index is I = N+
0 −N

−
0

• In contrast to the formulations with V

– not restricted to one real eigenvalue
in addition to zero

– for complex ones now different moduli
for the same phase possible

– on the other hand, realizations relying on V
no longer applicable, other ones to be used
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• To get particular realizations we require

1
2
(D +D†) = DD† F

(
DD†, 1

2
(D +D†)

)
where F is a nonsingular function
which is local for local D

• In W.K. 2002 and Fujikawa et. al 2002 special
cases depending on DD† only and with monotony,
thus only one real eigenvalue in addition to zero

• Example F =
∑M

ν=0 Cν(DD†)ν of W.K. 2002 can
readily be extended to case here with up to 2M+1
further real eigenvalues

• Evaluation possible by extension of method of chi-
rally improved fermions by Gattringer et. al 2001
(with systematic expansion of Dirac operator)

Mapping of GW equation to system of coupled
equations there can as well be done in case of
more general relation here
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• For chiral projections P− and P̄+ required

P̄+D = DP−

• Implies [P−, DD†] = [P̄+, DD
†] = 0 for

DD† =
∑
j

λ̂2
j (P+

j + P−j ) +
∑
k

|λk|2(P I
k + P II

k )

so that P− and P̄+ decompose as

P− =
∑
j

PX
j +

∑
k

PR
k , P̄+ =

∑
j

P̄X
j +

∑
k

P̄R
k

PX
j and P̄X

j in subspace of P+
j + P−j

PR
k and P̄R

k in subspace of P I
k + P II

k

• Condition P̄+D = DP− and spectral representa-
tion of D used to determine these projections

• Expressing PR
k and P̄R

k by P I
k and P II

k we get

PR
k = ckP

I
k + (1− ck)P II

k

−
√
ck(1− ck)γ5(eiϕkP I

k + e−iϕkP II
k )

P̄R
k = ckP

I
k + (1− ck)P II

k

+
√
ck(1− ck)γ5

(
e−iϕ̄kP I

k + eiϕ̄kP II
k

)
0 ≤ ck ≤ 1, ei(ϕk+ϕ̄k−2αk) = −1, eiαk = λk/|λk|
with the relations

TrPR
k = Tr P̄R

k = TrP I
k = TrP II

k = : Ñk
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• For j 6= 0 we obtain PX
j = P̄X

j so that for

N̄ = Tr P̄+, N = TrP−

we have N̄ −N = Tr P̄X
0 −TrPX

0 . Thus choice

P̄X
0 = P+

0 , PX
0 = P−0

which leads to N̄ −N = I

• For I = 0 it follows that
∑

j 6=0N
+
j =

∑
j 6=0N

−
j

so that to get Tr 1 = : 2d for

N̄ +N = N+
0 +N−0 + 2

∑
j 6=0

TrPX
j + 2

∑
k

Ñk

we must put

PX
j = P+

j or PX
j = P−j

• For general I we then have

N̄ = d, N = d− I or N̄ = d+ I, N = d

• For the dimensions in the decompositions of the
chiral projections P− and P̄+ we thus obtain

N = N−0 + L, N̄ = N+
0 + L

L =
∑
j 6=0

N±j +
∑
k

Ñk
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• Chiral projections may also be expressed by

P− =
1

2
(1− γ5G), P̄+ =

1

2
(1 + Ḡγ5)

• G and Ḡ are unitary and γ5-Hermitian with

G = P+
0 + P−0 ∓

∑
j 6=0

(
P+
j + P−j ) +

∑
k

(
eiφkPA

k + e−iφkPB
k

)
Ḡ = P+

0 + P−0 ±
∑
j 6=0

(
P+
j + P−j ) +

∑
k

(
eiφ̄kP̄A

k + e−iφ̄kP̄B
k

)
related to the quantities introduced before by

PA
k =

(
h2
kP

I
k + b2

kP
II
k − ibkhkγ5(P I

k − P II
k )
)
/(h2

k + b2
k)

PB
k =

(
b2
kP

I
k + h2

kP
II
k + ibkhkγ5(P I

k − P II
k )
)
/(h2

k + b2
k)

hk = ak sinϕk+sinφk, bk = 1−2ck, ak = 2
√
ck(1− ck)

cosφk = ak cosϕk, sinφk =
√

1− a2
k cos2ϕk

for G and by analogous relations for Ḡ

• Beause of the opposite signs of the j-sums
(which to allow for a non-vanishing index
must not vanish) obvious that generally Ḡ 6= G

• Special cases G = 1, Ḡ 6= 1 and Ḡ = 1, G 6= 1
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• General relation

D + ḠD†G = 0

• Choosing ck = 1
2

in chiral projections

G and Ḡ commute with D

• In case ck = 1
2

for the mentioned realization of D

V = 1− 2DF
(
DD†, 1

2
(D +D†)

)
and ḠG = V

• In GW case introduced by P. Hasenfratz 2002

G =
(
(1− s)1 + sV

)
/N , Ḡ =

(
s1 + (1− s)V

)
/N

with N =
√

1− 2s(1− s)
(
1− 1

2
(V + V †)

)
and real

parameter s 6= 1
2
, for which ḠG = V ,

also realization for more general operators here

• Special choice G = V , Ḡ = 1
in Narayanan, Neuberger 1993, 1994, 1995
and Lüscher 1999, 2000 with V of GW case,
in particular V of Neuberger 1998
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• Non-vanishing fermionic correlation functions are

〈ψσr+1 . . . ψσN ψ̄σ̄r+1 . . . ψ̄σ̄N̄〉f
=

1

r!

∑
σ̄1...σ̄r

∑
σ1,...,σr

Ῡ∗σ̄1...σ̄N̄Υσ1...σNDσ̄1σ1 . . . Dσ̄rσr

with the alternating multilinear forms

Υσ1...σN =
N∑

i1,...,iN=1

εi1,...,iNuσ1i1 . . . uσNiN

Ῡσ̄1...σ̄N̄ =
N̄∑

j1,...jN̄=1

εj1,...,jN̄ ūσ̄1j1 . . . ūσ̄N̄jN̄

where the bases ūσ̄j and uσi satisfy

P− = uu†, u†u = 1w, P̄+ = ūū†, ū†ū = 1w̄

• Note that averages of |Υσ1...σN |2 and |Ῡσ̄1...σ̄N̄ |2 equal
to one for any N and N̄ since

1

N !

∑
σ1,...,σN

|Υσ1...σN |2 =
1

N̄ !

∑
σ̄1,...,σ̄N̄

|Ῡσ̄1...σ̄N̄ |2 = 1

• While P− and P̄+ invariant under unitary basis
transformations u(S) = uS, ū(S̄) = ūS̄,
Υσ1...σN and Ῡσ̄1...σ̄N̄ multiplied by detw S and detw̄ S̄,
therefore condition

detwS · detw̄S̄
† = 1

(constant equal to one in order that invariance
also for general linear combinations of functions)
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• Total set of pairs of bases because of condition

detwS · detw̄S̄
† = 1

decomposes into equivalence classes
of which one is to be chosen

– Without condition all bases
related to one of the chiral projections
connected by unitary transformations

– With condition total set of pairs of bases
u and ū decomposes into inequivalent subsets
which constitute equivalence classes

– Transformations which respect condition
do not connect beyond equivalence class

• Different equivalence classes are related by
pairs of basis transformations for which

detwS · detw̄S̄
† = eiΘ, Θ 6= 0

The phase factor eiΘ describes how the results
of the respective formulations of the theory differ

• Considerations simplify by noting that S
with detS = eiθ can be expressed by product
of irrelevant unimodular matrix Se−iθ/N

and matrix eiθ/N1
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• Properties of chiral projections imply
(1) corresponding decomposition of bases
(2) relations between u and ū

– From the general relation

P̄R
k = |λk|−2DPR

k D
†

putting PR
k =

∑Nk

l=1 u
[k]
l u

[k]†
l we get

ū[k]
l = e−iΘk|λk|−1Du[k]

l

with phases Θk so that P̄R
k =

∑Nk

l=1 ū
[k]
l ū

[k]†
l

– For P±j =
∑N±

j

l=1 u
±[j]
l u±[j]†

l =
∑N±

j

l=1 ū
±[j]
l ū±[j]†

l

where j 6= 0 we have with phases Θ±j

ū±[j]
l = e−iΘ

±
j |λ̂j|−1Du±[j]

l

• Because of N −N−0 = N̄ −N+
0 = L

so far diagonal L× L submatrix ML of ū†Du
in which eigenvalues

eiΘk|λk|, eiΘ
±
j |λ̂j|

have multiplicities Nk and N±j respectively

• Zero-mode part described by

P−0 =
∑N−

0

l=1 ulu
†
l and P+

0 =
∑N+

0

l=1 ūlū
†
l

with bases satisfying Dul = 0 and Dūl = 0
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• With this we find for the correlation functions

〈ψσr+1 . . . ψσN ψ̄σ̄r+1 . . . ψ̄σ̄N̄〉f =∑
σ′r+1,...,σ

′
N

ε
σ′r+1...σ

′
N

σr+1...σN

∑
σ̄′r+1,...,σ̄

′
N̄

ε
σ̄′r+1...σ̄

′
N̄

σ̄r+1...σ̄N̄
1

(L−r)!
Gσ′r+1σ̄

′
r+1
. . .Gσ′Lσ̄′L

e−iΘ
−
z uσL+1,L+1 . . . uσNN eiΘ

+
z ū†L+1,σ̄L+1

. . . ū†
N̄σ̄N̄

detML

where G = P̆−D̆−1 ˘̄P+, with D̆, P̆−, ˘̄P+ operators
D, P−, P̄+ restricted to the subspace on which
1− P+

0 − P
−
0 projects,

detML =
∏
j 6=0

(eiΘ
±
j |λ̂j|)N

±
j

∏
k

(eiΘk|λk|)Ñk

and phases Θ+
z and Θ−z related to zero modes

• Note that basis dependence of detML in subspace
and that additional one by ul and ū†l of zero modes

• Equivalence class of bases characterized by value∑
k

NkΘk +
∑
j 6=0

N∓j Θ∓j + Θ+
z −Θ−z
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• Conditions for equivalence class uS, ūS

P− = uu†, u†u = 1w, P̄+ = ūū†, ū†ū = 1w̄

detwS · detw̄S̄
† = 1

• Gauge transformations P ′− = T P−T †, P̄ ′+ = T P̄+T †

for G 6= 1, Ḡ 6= 1 with [T , P−] 6= 0, [T , P̄+] 6= 0
generally imply for transformed equivalence class

u′S′ = T uSST , ū′S̄′ = T ūS̄S̄T
with u′, ū′, S′, S̄′ satisfying transformed conditions
and unitary ST = S(T ,U) and S̄T = S̄(T ,U)
for which detwS(1,U)

(
detw̄S̄(1,U)

)∗
= 1 and

detw(S(Ta,U)S(Tb, TaUT †a ))
(
detw̄(S̄(Ta,U)S̄(Tb, TaUT †a ))

)∗
= detwS(TbTa, TbTaUT †a T

†
b )
(
detw̄S̄(TbTa, TbTaUT †a T

†
b )
)∗

• Insertion gives for correlation functions

〈ψ′σ′1 . . . ψ
′
σ′R
ψ̄′σ̄′1 . . . ψ̄

′
σ̄′
R̄
〉′f = eiϑT

∑
σ1,...,σR

∑
σ̄1,...,σ̄R̄

Tσ′1σ1
. . .

. . . Tσ′RσR〈ψσ1 . . . ψσRψ̄σ̄1 . . . ψ̄σ̄R̄〉f T
†
σ̄1σ̄′1

. . . T †σ̄R̄σ̄′R̄
where eiϑT = detwST · detw̄S̄

†
T with ϑ1 = 0

• Factor detwST · detw̄S̄
†
T = eiϑT for ϑT 6= 0 just

form met for transformations to inequivalent bases:

This part of transformation separated off
by requiring ϑT = 0
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• In special case G 6= 1, Ḡ = 1 because of P̄ ′+ = P̄+

no change of equivalence class part ūS̄

• Then, however, because of [T , P̄+] = 0 possible
to rewrite

ūS̄ = T ūS̄ŜT
and to calculate

detw̄Ŝ
†
T = exp(1

2
TrB)

where T = exp(B) (and TrB = 4i
∑

n,` b
`
n trgT `)

• Then factor in correlation functions

eiϑT = detwST · exp(1
2
TrB)

where now detwST form of transformation
to inequivalent bases:

Separating off this part one here remains
with ϑT = −i exp(TrB)
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• CP transformations of Dirac operator

D(UCP) =WDT(U)W†, W = Pγ4C
†

with Pn′n = δ4
n′ñ, UCP

4n = U∗4ñ and UCP
kn = U∗

k,ñ−k̂
for k = 1,2,3, where ñ = (−~n, n4), and C charge
conjugation matrix

• Implies for P− and P̄+ the relations

PCP
− (UCP) =WP̄T

+ (U)W†, P̄CP
+ (UCP) =WPT

− (U)W†

which give for the index ICP = −I

• Untransformed and transformed forms

P−(U) =
1

2
(1−γ5G(U)), P̄+(U) =

1

2
(1+Ḡ(U)γ5)

PCP
− (UCP) =

1

2

(
1−γ5Ḡ(UCP)

)
, P̄CP

+ (UCP) =
1

2

(
1+G(UCP)γ5

)
obviously differ by interchange of G and Ḡ,
thus because generally Ḡ 6= G
not symmetric situation of continuum
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• With basic conditions satisfied by u, ū, S, S̄
as well as by uCP, ūCP, SCP, S̄CP

uCPSCP =Wū∗S̄∗Sζ, ūCPS̄CP =Wu∗S∗S̄ζ

where Sζ and S̄ζ unitary operators

• Then for correlation functions

〈ψCP
σ′1

. . . ψCP
σ′R
ψ̄CP
σ̄′1

. . . ψ̄CP
σ̄′
R̄
〉CP
f = eiϑCP

∑
σ1,...,σR

∑
σ̄1,...,σ̄R̄

W†σ̄1σ̄′1
. . .

. . .W†σ̄R̄σ̄′R̄〈ψσ̄1 . . . ψσ̄R̄ψ̄σ1 . . . ψ̄σR〉fWσ′1σ1
. . .Wσ′RσR

where eiϑCP = detw̄Sζ · detwS̄
†
ζ

• Repetition of transformation must lead back,
therefore choice of Sζ and S̄ζ restricted such that

ϑCP = −i ln(detw̄Sζ · detwS̄
†
ζ ) same value

• Factor detw̄Sζ · detwS̄
†
ζ = eiϑCP again form

met for transformations to inequivalent bases
and this part separated off for ϑCP = 0
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• We define gauge-field variations by

δφ(U) =
dφ
(
U(t)

)
d t

∣∣∣∣
t=0

, Uµ(t) = etB
left
µ Uµe−tB

right
µ

where (Uµ)n′n = Uµnδ4
n′,n+µ̂ and (Bl/r

µ )n′n = B
l/r
µnδ4

n′,n

• In special case of gauge transformations then

Bleft
µ = Bright

µ = B

• Varying logarithm of condition detwS · detw̄S̄† = 1

Trw̄(S̄†δS̄)−Trw(S†δS) = 0

which with u(S) = Su and ū(S̄) = S̄ū becomes

Tr(δū(S̄)u(S̄)†)−Tr(δu(S)u(S)†) = Tr(δū ū†)−Tr(δu u†)

• Solely using the basic conditions

P− = uu†, u†u = 1w, P̄+ = ūū†, ū†ū = 1w̄

many variational relations (weaker conditions),
for example

Tr
(
P−[δ1P−, δ2P−]

)
=

δ1Tr(δ2u u
†)− δ2Tr(δ1u u

†) + Tr(δ[2,1]u u
†)

holding for general generators Bleft
µ(1), B

right
µ(1) and

Bleft
µ(2), B

right
µ(2) and [Bleft

µ(2),B
left
µ(1)], [Bright

µ(2) ,B
right
µ(1) ]
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• Effective action only in absence of zero modes
of D and thus also only for I = 0, then

−δ Seff = Tr(P−D
−1δD) + Tr(δu u†)−Tr(δū ū†)

• For gauge transformations with T (t) = etB

– δGO = [B,O]
from O(U(t)) = T (t)O(U(0)) T †(t)

– δGu = B u+ uS†x δ
GSx

from u(t) = T (t)u(0)Sx(t) for [T , P−] 6= 0

so that

Tr(P−D
−1δGD) = Tr(BP̄+)−Tr(BP−)

Tr(δGuu†) = Tr(BP−) + Trw(S†x δ
GSx)

• For [T , P−] 6= 0, [T , P̄+] 6= 0 then

δG Seff = Trw(S†T δ
GST )−Trw̄(S̄†T δ

GS̄T ) = i δGϑT

since Sx = SST S
′†, S̄x = S̄S̄T S̄

′†

and Trw(S†δS)−Trw̄(S̄†δS̄) = 0

• For [T , P−] 6= 0, [T , P̄+] = 0 where
equivalence class uS, ūcS̄ with δGūc = 0

δG Seff =
1

2
Tr(γ5B) + Trw(S†T δ

GST ) = i δGϑT

• No contribution by δGST and δGS̄T due to
(1) separation of mentioned transformation
(2) independent confirmation in the following
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• Lüscher 1999, 2000 defined current jµn by

Tr(δu u†) = −i
∑
µ,n

trg(ηµnjµn)

and required it to transform gauge-covariantly

• We get explicitly ηµn = Bleft
µ,n+µ̂ − UµnBright

µn U †µn

jµn = i(Uµnρµn + ρ†µnU
†
µn), ρµn,α′α =

∑
j,σ

u†jσ
∂uσj

∂Uµn,αα′

• Requirement j′µn = eBn+µ̂jµne−Bn+µ̂ because of

U ′µn = eBn+µ̂Uµne−Bn implies that one must have

ρ′µn = eBnρµne−Bn+µ̂

which with u′ = T uSx leads to the condition∑
j,k

(ST )†kj
∂(ST )jk
∂Uµn,αα′

= 0

from which with S−1
T = S†T it follows that

δGST = 0

confirming previous dealing with ST and S̄T
from different point of view

• For[T , P−] 6= 0, [T , P̄+] = 0 then in contrast
to Lüscher δG Seff = 1

2
Tr(γ5B)
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• For perturbation expansion we get for M = ū†Du
with M = M0 +MI

detw̄wM =
(

1 +
∞∑
`=1

z`

)
detw̄wM0,

z` =
∑̀
r=1

(−1)`+r

r!

`−r+1∑
ρ1=1

. . .

`−r+1∑
ρr=1

δ`, ρ1+...+ρr

tρ1

ρ1
. . .

tρr
ρr

tρ = Tr
(
(D−1

0 M)ρ
)
, M = ū0MIu

†
0

tρ fermion loops, D−1
0 free propagators,M vertices

• Vertices in more detail

M = P̄+0DIP−0+ū0ū
†
IDuIu

†
0+ū0ū

†
IDP−0+P̄+0DuIu

†
0

– Inserting term P̄+0DIP−0 in limit P̄+0 and P−0

can be replaced by 1
2
(1 + γ5) and 1

2
(1− γ5)

– Other terms rely on limit of uI and ūI.
Since only contributions from zero and corners
of the Brillouin zone survive, related chiral pro-
jections get independent of gauge field. Thus
constant bases in limit and uI → 0 and ūI → 0

• Since only P̄+0DIP−0 contributes in limit
correct vertex function at tree-graph order.
With appropriate Dirac operator also in general.
Thus usual formulation obtained in limit
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